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ABSTRACT

This paper describes an investigation of the dynamic behavior of

a pin ended elastic column, subjected to half-sine pulse loading applied

with small eccentricity. The column is replaced by a lumped parameter

mathematical model, and the equations for the model are solved with a

high speed digital computer. The failure criterion used is a limiting

value of extreme fiber strain. The minimum loads which cause failure

are found as a function of load duration for columns having the slender-

ness ratios 50, 100, and 150. It is shown that an elastic column can

support rapidly applied dynamic loads greatly in excess of the Euler

load. As the duration of the load pulse is decreased, the lateral

deflection at failure becomes progressively smaller and the effects

of axial inertia become increasingly significant.
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1. Introduction

The problems of the dynamic behavior of structures are ones which,

like so many others, have only recently been attacked with any sort of

vigor by the engineering profession. Whether this is due to the previous

unimportance of the problems or to the lack of tools for their solution

is primarily of historical interest; the fact remains that the problems

are of importance today, and tools are now available for the solutions.

One of these problems of structural dynamics which has aroused

considerable interest in recent years is that of a dynamically loaded

column. This seemingly simple structural member, whose behavior under

conditions of static loading was predicted by Euler in 1757 a
becomes a

quite complex system when the loading is applied dynamically.

Attacks on this problem have been concentrated thus far on solu-

tions for two types of loading - constant velocity loading of one end

of the column, and impact loading. Hoff [_1 9 2J has treated the case

of an elastic column, initially curved in the shape of a half sine wave,

subjected to constant velocity loading such as that encountered during

compression tests in commercial testing machines. He has shown that

rapidly loaded slender columns with small initial deflections will

support loads greatly in excess of the Euler load. Chawla
j_ 3 J has

extended this work to include the case of inelastic columns. Sevin 4

has confirmed Hoff's results, while retaining the effects of axial

inertia (which were not considered by Hoff), and one of his conclusions

is that

...so long as the column remains elastic, axial inertia effects
are of negligible importance in so far as the gross behavior of

Numbers in brackets refer to bibliography.



conventional structural columns is concerned regardless of the
initial deflected shape, end fixity, or type of axial loading.,

Gerard and Becker [5] have studied the impact loading case using the

unloading strain wave produced upon failure of a tension specimen, and

have concluded that a column may momentarily withstand any magnitude of

compressive stress, and that the buckling may occur over a small portion

of the length of the column, rather than the entire length.

The literature also contains several treatments [6,7,8] of the

problem of the stability of a pin ended column subjected to an axial force

of the form P. = P + A sin w t, It has been shown that, for certain
1 o

values of oj , the maximum compressive force P + A may become much higher

than the Euler load without causing instability. On the other hand, it

is also found that instability may exist when P is a tensile force,

provided that A and u> have the proper values.

Konig and Taub [9] have treated the case of a pin ended column with

an initial half sine deflection, subject to a suddenly applied force of

constant magnitude and variable duration. Their investigation shows

that perfectly elastic columns can support loads in excess of the Euler

load when the duration of the load is short.

Other than in this last reference, the problem of the prediction of

the load carrying capacity of a dynamically loaded column subjected to

an externally applied force pulse of specified shape and duration seems

to have been neglected. This is the problem which is considered in the

present investigation.

The column is assumed to be perfectly elastic, and is initially

straight, rather than having some initial curved shape. It is of con-

stant cross section, has constant physical properties, and is free of



any damping. The effects of rotary inertia and shear strains are neglected,

but axial inertia effects are retained, as well as non- linear axial strain

components due to bending.

The loading imposed on the column is a half sine pulse of force^

applied with an arbitrarily chosen eccentricity, in an axial direction.

The column is considered to have hinged-hinged end conditions, with the

loaded end free to translate in the longitudinal direction. The unloaded

end has an eccentric fixed-pin connection which allows only rotation.

Since the concept of stability or buckling of the column seems to

lose its meaning when applied to columns subjected to dynamic loading,

some other criterion of failure must be used. In this study, an arbitrari-

ly selected value of the extreme fiber strain is used to define failure.

The problem is formulated and solved, not in terms of the real column,

but in terms of a lumped parameter type of mathematical model. A set of

equations is developed for this model and is then solved in a high speed

digital computer.

2. The Efethematical Model and Development of the E quations for the System.

In order to study the dynamic behavior of the column, the real column

is replaced by a lumped parameter model consisting of a series of hinged

rods, with point masses at the hinged joints. A general section of the

mathematical model is shown in Fig. 1. The complete model consists of

n increments, each of length & = L/n, and n + 1 point masses, each having

a mass of m - uJi (except those at either end, whose masses are yul/Z).

The model is initially perfectly straight, with an eccentric fixed pin

connection at mass n + 1. The external load is applied eccentrically to

mass number one, which is free to rotate and to move in the x direction,



but is restrained from motion in the y direction. The eccentricity

of the fixed pin connection at mass number n + 1 is the same as that

with which the loading is applied.

Figure 1. A section of the mathematical model of the column,

The masses are connected by perfectly elastic, massless rods,

which are hinged to each other at the point masses, as shown. The rods

have an axial stiffness of K = EA/J. , where E is Young's modulus for the

column material, and A is the area of the cross section of the column.

The rods are considered flexurally rigid.

At each of the point masses, with the exceptions of those at either

end, is a perfectly elastic, massless spiral spring
s
with a spring con-

stant C - HLIlJl for either direction of rotation. (I is the rectangular

moment of inertia of the cross section of the column)

Referring now to the free body diagrams shown in Fig. 2 and Fig. 3,

the following equations may be written:



y
Vc k

?: -9 it I

+ Vt+

->- x

Fig. 2 Free body diagram of one mass of the mathematical
model of the column.

,A^i
Fig. 3 Free body diagram of one of the length increments

(rods) of the mathematical model of the column.

a

-> x

Ul-i

Fig. 4 The geometry of one of the length increments of the
mathematical model of the column.



dV/dt2 = (P- - P^/m; (!)

d\/dV- = (Vi -VU i)/mi (2)

FJ cos Oc + Vl Sin 0., = K &ll (3)

AM;=M L
-M L _, = P

C
AVL -VC

(i+AU L
) (4)

In these equations, AjZj •= JL - JL\ (see Fig. 4), Au^= U^-tX
L _ t ,

A~IT
C
= "Ul - 1T

L _, , Ml = C (0 C -0{.+ i) 5 and t is real time.

Solving eqs. (3) and (4) for P- and V- yields

p. - AMtSinQl + K^(^AaQ .5.

Vf - 1 - AA
" (6)

In order to put these into dimensionless form, both sides of eqs.

(5) and (6) are now divided by F = P /tt
z

, where P
E

is the Euler load

for the column. The numerator and denominator of both eqs. are divided

by JL , while noting tha*

K/F = (EA/iH^Al) =
(
ea/0'Wea) = "Y/i

where P- — is the slenderness ratio cf the length increment, giving

p.. (AML/p^ SLnQt + ny(Wi)(l+ AUc/j)
A[ ~ F

=
1 - AJZj/i

and

_ vt _ ny^/iK^/i) ~ (
AM7Fl)cosec



The following approximations are now made:

sin 0: « Gc

cos 01 ^ 1 - el/z

1 -Ali/X & 1

These approximations are in error by one per cent or less for the

values of Q-
t AXi , AUi, , and Al/l anticipated.

Substituting in the equations for A^ and B^ , and using the

notation ATTli = AMc/FJ. » leads to

and

B . = n>, ( Aic/
X ) 9c _A-mt (i _ ef/2 )

Now, reference to the geometry of Fig. 4 shows that

X- (JL + Aac)cos©c + AV-sinOc

or

Aj2; - 2 ~ Jl = JZ - (.! + Au t)cos9L - A1TC sinGc

whence

AliA? = 1 - ( 1 + ALU// )cos0L - (Air^) sin 9:

If the same approximations as were used previously are now substituted,

this becomes

Alc/i . (ec/Z)(A^) "(A^ + 0?/z )

We further assume that the product [Qi-/z)( /JL) *- s negligible

compared to the sum AUi/d -+. Qc /? > s° that

Aic/£ » -
(
AUYi + ©t/2)

This approximation is now substituted into the expressions for A
L

and

Bi. , giving

Ai= hMiGl -nVz
(
AV/^ Gt%)(l + AUL

/i)

7



and

B L
= -n>* (aw/j( + ©7, )

- A7YU (l - ©?/*)

These equations may be further reduced by assuming that

(a)
|

AU-t/i
| << 1

(b)
|
attll ec| « |

ny-( au^ + ely£
) |

(c) ©*/*. << 1

The physical significance of assumptions (a) and (c) is clear.

The assumption made in (b) is equivalent to neglecting the contribu-

tion of the y direction force component tc the total force transmitted

by the rod, i.e., omitting V. sin 9. in eq. (3).

Based on the above,

A L = -r^(ALVi+ e'/z) (7)

and

bi - 9t Al - A7TU (8)

Equations (7) and (8) are the dimensionless expressions for the

components of the force transmitted by the ith length increment in the

x and y directions, and are used in this form in the numerical solution.

Using the notation APc = p£ - Pj.+
|

an^ AAt — APj/p > equation

(1) may be written as

d
Z
ULi/dtz = AAc/(m L

/ F )

But, ra; = ^JL = yA£ and F — EA /rf-p
2
'

, so that

dV/dt* = A At z/Utfp^

However, EL / tf" = S r
, where S is the velocity of travel of an

elastic wave in the column material, so that

cTu;/^2 = AA L (syin,^.) = AA t
(s^)(i/

n^) (9)



and

These equations may be further reduced by assuming that

(a)

(b)

(c)

The physical significance of assumptions (a) and (c) is clear.

The assumption made in (b) is equivalent to neglecting the contribu-

tion of the y direction force component to the total force transmitted

by the rod.

Based on the above,

(7)

and

(8)

Equations (7) and (8) are the dimensionless expressions components

of the force transmitted by the ith length increment for the in the x

and y directions, and are used in this form in the numerical solution.

Using the notation and , equation

(1) may be written as

But, and , so that

However, , where is the velocity of travel of an elastic

wave in the column material, so that

(9)



For a beam with hinged ends the natural period of first mode vibra-

tion , *X\ , may be found from the expression

Solving this for % gives

which leads to

S
z

/f = iny/V^z

Substitution of this expression in (9) yields

dV:/^- = AA-L (4^1 fa T?)

Or, since Jl is not a function of time,

Dimensionless time is now defined as T = t/TT, , so that

(dt)
2 - T^dT)

2
". Therefore,

<T(
w
/J.)/dT* = aAi (an/n-y- , l £ L £ n (io)

By the same reasoning as has just been applied to eq. (1), eq. (2)

may be reduced to

d'fAVdT 1 = AB; (2n/ny-
,

d ^ l^ n (11)

Equations (10) and (11) are the equations for the dimensionless

accelerations in the x and y directions respectively, for 1 6. i 6: n,

which are used in the numerical solution, For the first mass, the

acceleration in the x direction is twice the value given by eq. (10),

due to this being a half mass.

In order to "solve" the acceleration equations for the n + 1 masses,

it is necessary to specify the forcing function, boundary conditions,

and initial conditions. These are specified as follows:



(a) for 0-T^l//3 , the external load applied (eccentrically)
to mass number one is given by

A, = A sin(Ti/3 T), where /$ 3 T> / ~

For T > 1//3 , A, =0. Specifying the applied force in

this manner allows a selection of both the amplitude and

duration of the pulse. The bending moment at mass one is

given by M, = P, e, while that at mass n + 1 is P
n+|

e.

(b) for £ T £ or.
; ^"i/i= O , TTn+ , /£ - O ,

a n+i/£ = O

(c) at T = 0, for 1 £ i £ n + 1:

vVi=° >
at/i=° » cL(^ydT = 0, d(aiA)/aT =

The choice of the eccentricity with which the force is applied is

made arbitrarily. The value used, given in dimensionless form, is e/r =

0.05, where e is the actual eccentricity, and r is the radius of gyration

of the column cross section.

Another arbitrary choice which is made is that of a failure criter-

ion for the column. For this investigation, the column is said to have

failed when the extreme fiber strain, £ , reaches a value of 0.01.
' max

This represents a stress of 300,000 psi in steel, which is admittedly

high, but which is also an attainable yield point for certain alloy

steels. It is felt that the use of this high value sets an upper limit

for columns fabricated from presently available material.

In order to compute the value of the extreme fiber strain. C , itv s ^ max*

is necessary to find both the centroidal axis strain 6 C and the strain

caused by the application of bending moments, since € = |£ I +|€u I •

The centroidal axis strain in any length increment of the model is

calculated from

€ cC = lm/x = - (aui/£ + et/z)

10



The strain in the same length increment, caused by the bending moments,

may be computed as

6W = (cMa.3.)/EI

where M^. = (M t -* Ml-,") /^

and c is the distance from the centroidal axis to the extreme fiber.

Recalling that M^ = FJ^TYli, , we may say that

which reduces to

Sbi =
(
c/2n 2-i)(mn c + 7YU-0

However, JL=. r/O , so that

It is also necessary to make a choice, at this point, of the value to

be used for c/r. We know that for a thin walled, hollow cylindrical

cross section, c/r = (2)
z

, while for a solid cylindrical cross section,

c/r = 2 . The value used in this investigation is c/r = 1„5.

Substituting this value in the equation above gives

&bl = (°-75/nV,)(TYli +mi-o
from which

£i wax - ALL'A**/fe|+|*zs(Tfo +
,M (12)

3. The Numerical Solution

The equations of the system are solved by a numerical method of

integration, utilizing Fortran programming and a Control Data Corpora-

tion 1604 high speed digital computer. A simplified block diagram of

the basic program is shown in Fig. 5, and a complete program, together

with the program notation, is given in Appendix III.

Referring now to Fig. 5, it will be seen that S, A , n, o< , A
,

11



Fig. 5. Block Diagram of Basic Computer Program

Main Program Subroutine Sigma

Start

±
Read

S,A ,n
;
c<

?/^ 5
S~

Set Initial
Conditions

Compute

Compute

Compute

Call Subroutine

Sigma

Compute

^-L (mw)

X

Ao/T, §^£ 3
AT, n,

l^/AUmeu^

Compute

«"%r <
d(W/i)

/aT

. Compute

t = T-HaT

Compute

Compute

Compute

d(^)/
dT(? dw/i)/dT

Compute

(
uVi) £ (

Vi/j0

Return

12



and S are given as input data to the program. (5 is the ratio ^/Tt ,

where T t is the arbitrarily selected dimension less time at which the

program is to terminate). For the basic program shown in Fig. 5, the

value of A is that which corresponds to P
(

/PE = 1.0.

At some time, T, , when the values of d
z

(
Ul
/i)/clT

2
, d

2
(^/i.)/dT

7
'

,

<K ai/jO/dLT , cLC^/JO/dT , (Ui/X) vand (VI /I) have been found,

the program jumps to the subroutine in order to compute these same

quantities for time Tz = T, + AT, where aT is the time increment used.

As a first estimate, the accelerations are assumed to be constant during

the time increment, AT; that is, d^^/jO/cLT
1

= cft
UJ
/jO /dl"

2
"

| T

Based on this assumption, the velocity may be calculated as

d( a:/!)/clT|
T^= d(Ui/JL)/ai\

Ti
+ *T- d

x
Ml)/d T*-|

Ti

(Oily the development for the x-direction quantities is shown here; the

development is precisely parallel for the y-direction ) Having the velo-

city, we now compute the displacement at T2 as

(ULi/jO]
Tt

== (ui/jO
|Tl

+ (AT/2)[d( uViVdT|
T(
+ cl(

u;
/i)/olT| TJ

which will be recognized as a trapezoidal integration method.

With the first estimates of the displacements at T 2 now known, the

forces A
L
and B\ may be calculated from eqs. (7) and (8) (with the excep-

tion, of course, of A, , which is specified), Eqs. (10) and (11) are

then utilized to find the accelerations at TL . With these values in

hand, the program now recomputes the velocities and displacements at T
2 ,

using the trapezoidal integration scheme:

ol(*^0/dT| * cU^/jO/dT^f UT/z) £(*m/tfz\^ dHul/fi/dT%
\Tt

13



and

(u*/i)|
li

« (u-i/jOI^ + (at/2) dLc^/i)/dT|
Ti

+ ^u)/<n\
ri

At this point, there is a return to the main program, and the £;.( m(Mt-)

are calculated from eq. (12). These €c (ma.*) values are then compared

to the failure strain, 0.01. If any of the &{.(m&x) is equal to or greater

than 0.01, a printout of the quantities shown (in Fig. 5) is made and

the program stops. If none is equal to or greater than the failure strain,

the program compares the elapsed time with the specified terminate time.

If the elapsed time is equal to or greater than the terminate time, the

amplitude of the applied load is doubled, the initial conditions are

reset, and the program commences again with the new value of applied

load. If the elapsed time has not yet reached the terminate time, the

computation is continued with the original value of A .

In this manner, a rough set of failure values of P, /P& is found.

In order to refine these, a program such as the one given in Appendix III

is used. It is basically the same as the one diagrammed in Fig. 5, with

the following exceptions:

(a) the input value of A is that which was found to give

failure using the basic program

(b) the program does not stop after the printout of failure

values. Instead, the A value is decreased by a certain

amount and a jump is made back to the point at which the

initial conditions are set. The run continues until a non-

failure value of A is found.

(c) the program stops after the time comparison, when T 5* 1/S ,

instead of continuing with a doubled value of A a .

14



Using this second program, any desired degree of refinement in

the failure values of P, /P£ may be attained.

The program shows a marked sensitivity to the time increment, &T,

used in the integration scheme. For jB> ^ 5, the time increment has been

computed from

AT =

which gives an equal number of time intervals during the force pulse,

for any jS — 5. For
fi

< 5, it was found that

TC/ZAT =
Zrrp

which corresponds in real time to At = ~ ( JL /s), gives good accuracy (as

judged from a work - energy comparison which is described in the follow-

ing section).

The computer program also shows some sensitivity to the number of

length increments n used in the model. An investigation of this problem

for values of n between 5 and 40 reveals that n = 20 gives good results

without requiring excessive computer time.

4. Discussion of Results

Solutions for the failure value of P, /P£ have been obtained for

three values of S (column slenderness ratio), and for a range of ft from

0.1 to 80. These results are summarized in Table 1 and are shown

graphically in Fig. 6.

It should be noted that the values of P, /PE given in the table and

plotted in Fig. 6 are values midway between the minimum P, /P£ 's giving

failure and the maximum non-failure values. Adding the tolerance, <£ ,

to the tabulated P, /PE values gives the minimum failure P, /PE 's

found, while subtracting (£ gives the maximum non-failure values.

15
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It is possible to make some predictions regarding the values of

P, /PF which should obtain at both the high and low ends of the $ range,

and also, to predict the maximum values of P, /P£ . First consider the

case for /S = 0.1, which is approaching the static loading case. If the

failure criterion of £ = 0.01 is applied to the secant formula for
max rr

eccentrically loaded columns, the following is obtained:

which becomes, on multiplication of both sides by A/Pe

*-A.4[i+*~($t*t*?)]RE
However,

so that

2=*± »«»-*($? an* EA= P,(|f

'hi\-\

Upon substitution of the selected values of e/r = 0,05 and c/r = 1.5,

this becomes

€.«(£)*= -Ifi +0.075 .«(¥[*?*)

This equation, when solved by a trial and error method, yields the follow-

ing values of P, /P£ , compared here with the computer solution values

for ,6 = 0.1, for the three slenderness ratios:

Slenderness Secant Computer
ratio Formula Solution

Value Value
S P, /Pg. P./Pb.

50 0.943 0.925

100 0.989 1.01

150 0.996 1.03

Another value of P, /P£ which may be predicted analytically is the
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maximum load which the column can support without lateral deflection.

If the column is loaded rapidly enough so that the amount of lateral

deflection at failure is insignificant, then the column may be treated

as an eccentrically loaded compression member, and the limiting load may

be computed from

r — CTnaav. _ ( R/Re.) nr.^-X

which gives

( '/Pe-W* ~ €™c*. (—J ( 1 + e^ ~)

The solution of this equation for S = 50, 100, and 150, £ = 0.01,n
• ' ' max

and ec/r 2 = 0.075 is compared below with the maximum values of P, /P£

taken from the curves of Fig. 6.

Slenderness Upper Limit Computer
ratio S (P

i
/P & ) max (P , /P& ) max

50 2.36 1.97

100 9.42 7.55

150 21.20 16.625

In each case, the computed value falls below the limiting value.

This is due to the fact that bending action is allowed in the computer

solution, whereas the theoretical solution assumes that only axial com-

pression takes place, and also, to the fact that the computer solution is

based on dynamic, rather than static loading.

The limiting value of P, /PE which should be found at the high end

of the A range may be predicted from a consideration of the travel and

reflection of an elastic compression wave in the column. For a wave

having the shape of a half sine pulse and a duration of Tj/2, the

following will be noted:
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(a) the wave front will travel from the loaded end of the
the column to the pinned end in a time L/s.

(b) at the pinned end, the original pulse will be reflected
as a compression pulse traveling back toward the loaded
end. This pulse will add to the original.

(c) the compression pulse thus reflected will travel back to
the loaded end of the column where it will again be re-

flected, this time as a tension pulse which subtracts from
the sum of the original and the first reflection.

From this analysis it may be seen that if the loading is sufficient-

ly rapid that the first tension pulse reflected from the loaded end does

not arrive at the pinned end before the peak value of the original com-

pressive pulse, then the maximum axial force at the pinned end will be

twice the peak value of the applied load.

Thus it is readily seen that, for % /4 -^ 2.L/s (or /3- z>

I

^ -

S/2TI), the maximum value of P
(

/P£ which the column can support will

be one-half the (P, /P E )max value previously predicted. The applicable

values of & and -^ (P , /P c ) are given below for the three slender-
' 2. '

t max °

ness ratios.

S jS ± CPi /Pe. )max

50 7.95 1.18

100 15.90 4.71

150 23.85 10.60

These limiting values of P, /PE are shown on Fig. 6 as the dotted

and dashed ( ) lines, with the left hand ends of the

lines indicating the minimum values of /3 for which these values hold.

It will be noted that the computer solution values for all three slender-

ness ratios are below these limiting values, but appear to approach the

limits asymptotically as /3 increases. Once again this is due to the

20



bending which has been allowed in the computer solution, but which is

not considered in the limit analysis.

The excellent agreement shown between the computer and theoretical

solutions for the three cases discussed above has been further enhanced

by three additional checks which have been made on the adequacy of the

model and computer program to give reliable results.

In Appendix I, the computer solution for a constant load is com-

pared with the theoretical solution, given by the secant formula, for the

same load. The computer solution gives deflections which oscillate about

some average deflection curve, due to the fact that no damping is in-

cluded in the model. The "static load" deflections for the computer

solution have been calculated as the average of the maximum and minimum

values. It will be seen that the deflection curves compare quite favor-

ably, even though the computer solution is made with only ten length in-

crements in the model, instead of the twenty which are used for all failure

predictions. Also, the dynamic nature of the model response tends to give

larger deflection values than those predicted by the secant formula.

Appendix II contains a graphical comparison of the theoretical and

computer solution for the travel of an elastic strain wave down the

column. It will be noted that the agreement is very good, in spite of

the fact that the model used in the computer solution was eccentrically

loaded and was allowed to bend. The amount of lateral deflection is

extremely small, however, and does not affect the validity of this check.

A continuous check, comparing the work done on the column by the

force pulse with the total energy stored in column as strain (potential)

energy and kinetic energy, is made during all computer solutions for

failure values of P, /P E . These agree within an average value of less
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than two per cent. The maximum discrepancy found was 6,62 per cent.

From the data given in Table 1 and the curves of Fig. 6
9

it appears

that there are several regions in the failure curves which may be dis-

tinguished from each other on the basis of the type of failure; that is,

whether the failure is primarily due to bending strain or to axial strain.

The type of failure may best be judged from a consideration of the data

giving centroidal axis strain, € c , as a fraction of the failure strain,

0.01. In the case of all three slenderness ratios, beginning with the

minimum /9 value, there is an initial region of bending failure,, follow-

ed by a transition region leading, in each case, to the maximum P, /Pg_

values and a region of axial strain failures. This is followed by another

transition region which leads to the final region of axial strain fail-

ures.

Fig. 7 illustrates the lateral deflection change which occurs

during one of the transitions from bending to axial strain failure. In

this figure, the lateral deflections at the time of failure have been

plotted for /8 - 2 ( € c 2% of 0.01) and = 7 (£ c = 48% of 0.01) for

S = 150. It will be noted that the maximum lateral deflection for^ = 2

is more than 14 times as large as the maximum for /3 = 7.

From the data compiled in Appendix V, it is possible to evaluate the

approximations and assumptions made in developing the equations for the

system. If this is done, the following is found:

(a) the maximum error in sin 0; = 9j is 1.61 per cent

z
(b) the maximum error in cos Q; = 1 - &i /2 is less than one

per cent

(c) the maximum error in 1 - &Q-i/JL = 1 is less than one per cent

(d) the maximum error in Air^- 9-
t is 1.56 per cent
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.202468
Lateral deflection - Per Cent of Column Length

Fig. 7. Lateral deflections, at failure, of a column of
slenderness ratio 150, for fi = 2 (P,/Pt = 6.60) and
/Q = 7 (P, /PE = 14.00).
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2.

(e)
L /2 has a maximum value of 0.05, which is small com-

pared to 1.00

(f) the maximum value of JAu^/i-l is 0.05, which is small in
comparison with 1.00

(g) the product (&i/z) '

(
ALU

/i) is less than 37. of the sum

From this is appears that the assumptions and approximations which have

been made in deriving the equations are reasonable
9
and do not produce

gross errors in the results.

5. Conclusions

On the basis of the results discussed in the previous section, the

following conclusions may be drawn:

(a) The lumped parameter model in combination with a high speed

digital computer provides a powerful tool for the study of

the dynamic behavior of columns.

(b) Columns will support loads much greater than the Euler

load, without failing, when subjected to rapid dynamic

loading. The maximum load which a column will support is

dependent upon the type of loading and the slenderness ratio,

as well as the yield strength of the column material. The

ability of a column to support large dynamic loads without

failing is due to the delay in the development of lateral

deflections caused by lateral inertia.

(c) Axial inertia effects become significant with this type of

loading during the first transition from bending failure to

axial strain failure, and remain important as the rapidity

of loading is increased.
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(d) The mode of column failure - that is, whether the

failure is caused primarily by strain due to bending

or to axial compression - varies in a distinct manner

as the rapidity of loading is increased.
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APPENDIX I

Coroparison of theoretical and computer solution deflections for

static load. S 100; e/r = 0.05; P, /P£ = 0.85

The theoretical deflection curve for an eccentrically loaded column

may be derived from the secant formula as follows:

v, e> r /PI 2 \^
21** - -er

sec(£jLr - 1 "I

L LL Uei) X
j

where "V is the maximum deflection from the original position. Now,
max ° r

P, = 0.85PE = 0.85 Tt
7

- EI/L
2
"

, so that

However, e/L = e/(rS), and e/r = 0.05, S = 100.

Therefore

L ioo L J

In order to get \r /L on a percentage basis, multiply both sides by 100,
max

giving

y™*-*
(7.) = 0.05 [7.2055] = 0.360275

The remainder of the theoretical deflection curve may now be calculated

from

v/L(%) = 100(v' /L) sln(Tt x' /i/) - 100 (e/L)
max

which is derived from a consideration of the sketch below.

y>' 1 iy>v
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The theoretical deflections computed from this equation and the

computer solution deflections are tabulated in the accompanying table

(Table 2), and are compared graphically in Fig. 8. The computer solu-

tion does not yield a constant set of deflections, but rather, gives

values which oscillate about some average deflection curve. This is

due to the fact that no damping is included in the mathematical model.

The static load deflections have been computed as the average of the

maximum and minimum values given by the computer solution.
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0.85

Q." tksA

Or

Table 2

Static Load Comparison

S = IOC; e/r 0.05; P, /P£ = 0.85

Time (T)

Computer Solution Force-Time History

Per Cent
Length

(x/L x 100)

Theoretical
Lateral Defl.

(% L)

Maximum
Computed

Lateral Defl.

Minimum
Computed

Lateral Defl.

a L)

Average
Computed

Lateral Defl.

(% L)

10 0.112 0.209 0.031 0.120

20 0.213 0.396 0.057 0.226

30 0.292 0.540 0.076 0.308

40 0.342 0.635 0.086 0.361

50 0.360 0.670 0.092 0.381

60 0.342 0.635 0.086 0.361

70 0,292 0.540 0.076 0.308

80 0.213 0.396 0.057 0.226

90 0.112 0.209 0.031 0.120

100
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Fig. 8. Theoretical and Computer Solutions for lateral
deflections of column with constant load. S 100'
e/r = 0.05. Solid line ( ) is theoretical; O -

minimum defl. computed; $ - max. defl. computed;
A -average defl. computed.
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APPENDIX II

Comparison of theoretical and computer solution s for an elastic

st rain wave in the column. S = 50, /9 = 4, A = 10, T = 0.0392699.

The theoretical solution for the strain at any point in the column

may be derived as follows:

At a time T, the force at the loaded end of the column is

A, - -& - A sin (tc/3T)

and, neglecting the effects of lateral response motion, the force at some

distance x from the loaded end is

A, = -f = A..m[it0(T- i^;)]

where x/s is the (real) time required for an elastic wave to travel a

distance x.

Now, since F = EA/S
T

,

However, € = P/EA, so that

£l = -jlrtn[W^(T- ^)]
Since 7^ = 2LS/tC s, this may be written as

which, upon substitution of A 10, S = 50, = 4, and T = 0.0392699, be-

comes

£i - 4-A\0
_i

slf\^4-TC (0.031261*1 - ^~)~\

The theoretical strain values have been computed from this equa-

tion and are compared graphically with the values from the computer solu-

tion in Fig. 9.

It will be recognized in the last equation for £c that x must reach

a value of 1.25L before £j = 0. This means that the pulse has reached the
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pinned end of the column and has been reflected back a distance of 0.25L.

Thus, the values of £i computed for 1 ^ x/L^1.25 must be added to the

values calculated for 1 ^ x/L ^t 0.75 to give the resultant strain in the

region 0.75 ^ x/L^l.
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APPENDIX III

Computer program notation

Computer
Program
Term

ALPHA (I)

ANGL (I)

BENDM (I)

BETA (I)

DDX (I)

DDY (I)

ECC

EXTSTR (I)

FORCE

FAC1

FAC2

FAC3

Corresponding
symbol in the
basic eqs.

Hat

Bi

d
2

(^/i)/dl
z

e _ e
£ " r/o

€v. (max)

A,

<X

/8

S

Computer
program
term

INTV

J

RHO

SLRT

STRAIN (I)

TIME

TIMEINT

XACCL (I)

XDEFL (I)

XVEL (I)

YACCL (I)

YDEFL (I)

YVEL (I)

Corresponding
symbol in the
basic eqs.

n

n + 1

P
S

€cc

T

AT

^(ai/i)/dLT
z

(^/jO

cU at
/jO/dT

(•VI /A)
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PROGRAM COL/

PROGRAM TO DETERMINE COLUMN BEHAVIOR WHEN HALF SINE PULSE LOAD IS

APPLIEO WITH SMALL ECCENTRICITY 10 INITIALLY STRAIGHT COLUMN

ODIMENSION ALPHA(60),BET<\ (60) , XACCL I 60 ) , YACCL ( 60 ) , XVEL(60) f

1 YVEL I 60 ) t XI) EFL i 60 ) , YDEF L ( 60 ) , Bh NDM ( 60 ) , ANGL ( 60 ) , ST R A I N ( 60 )

,

2 U( 1), P( ]) v EXlSTR(OO)

COMMON INTV, J, UMFINT,>(ACCL»XVFL»XDF-FL, YACCL, YVtL#YDEFL,

1 A IiMTV.RHO, ANGL, BE NDM, ALPHA, BETA, TI MF, ECC , FAC2 , FORCE, Cl,C2,Ci,

2 WORK

INTV = 20

READ 100, SLRT, FAC I , FAC2, FAC3, FORCE, ECC

READ 110, A

100 FORMAT (5E9.2, E20.6)

110 FORMAT (E9.2)

J = INTV + I

.AINTV = INTV

RHO = SLRT/AINTV

190 DO 200 I = 1 ,J

ANGH I ) = 0.

XVELU ) = 0.

YVEL (I ) = 0.

XDEFL(I) =0.

YDEFLC I) = 0.

200 BENDMI J) = 0.

FORCE = FORCE - A » 9.87

WORK = 0.

TIME = 0.

ALPHA! 1 ) = 0.

FAC1 = O.UO FAC2

TIMEINT = ( 1 .570796)/( { A I NTV«»2 ) «RHO«F AC 1

)

CI = (O.U05285)»(AINTV*»2)

C2 * 2. « CI

C3 = TIMEINT/2.

210 DO 220 I = 2, INTV

220 BENDM(I) = ( AINI V»*2)*(ANGL( I ) -ANGL(H-l))

DO 230 I = 2,

J

2300ALPHAU) = -(AINTV**2)*( RH0**2 ) * ( XDEFL ( I ) -XDEFL(I-I)
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1 +{ANGL( I)»*2)/2.)

BENOM(J) = AL.PHA(J) *'ECC

DO 235 I = 2,

J

235 BETA(I) = ANGL(l) * ALPHA(I) - (BtNOM(I) -BENOM(I-U)

BETA! 1) = BETAm
AbPHAU+l ) = ALPHA(d)

BETAU+1) = BETA(J)

DO 240 I = 2,

J

XACCL(I) = CIMALPHA(I) - ALPHAU+1))

240 YACCL(I) = CI * (BETA(I) -BETAU + 1))

XACCL(l) = C2 * (ALPHA(l) -ALPHA{2))

YACCU 1 ) = 0.

CALL SIGMA

250 DO 255 I = 2,

J

255 STRAIN(I) = -(Xt)FFL(I) -XDEFL(I-I) + I ANGL { I ) »*2 )/2.

)

STRAINt I ) =0.
DO 256 I = ?,I^TV

256 BENDMU) = ( AINTV#»2 ) * ( ANGL ( I )-ANGL ( I 1 ) )

DO 260 I = 2,

J

2600EXTSTRU )= ABSF ( STRAIN! I)) + ( 0. 75/{RH0*AINTV*«2 ) )

1 ABSF (BENDMU) + BENDM(I-l))

EXTSTRt 1) =0.
1 = 1

900 I = I t 1

IF ( I - J ) 90 rj,90 L>,950

950 IF( TIME - I./FAC3 ) 210,710,710

905 IF ( EXTSTR(I) - 0.01 ) 900,910,910

910 SUMKEN = 0.

VEN = 0.

BENEN = 0.

COMtN = 0.

TOTFN = 0.

DO 915 1 = 2 f INTV

VEN=VEN+( 1.2 3370

1

/AI NTV»«2 ) * ( XVEL ( I ) **2+YVEL { I ) **2

)

915 BENEN=(0.50/AINTV«*2)*(BENDM(I )«»2) + BENEN

SUMKEN = VEN + ( 0.6 16850/A INTV**2) { XVEL ( 1 ) **2

)

DO 916 I = 2,

J
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916 COMEN=COMEN+(0.S0)»(AINTV**2)*(RHO»*2)*(STRAIN( 1 )*«2)

TOTEN = SUMKEN BENEN <- COMEN

PRINT 300

3000FORMAT { 6H SLRT /X , 5HF0RCE7X , 3HECC7X , UHF AC26X , 7HT I ME INT3X,

1UHINTV//)

PRINT UpO (SLRT, FORGE, EGG, FAG2, UMEINT* INTV)

400 FORMAT ( 1PE9.2, IP4U1.2, 17////)

PRINT 500

500 FORMAT (20H TIME//)

PRINT 510, (TIME)

510 FORMAT (IPE20.7, 1H //)

PRINT 550

550 FORMAT (5H I 8X, 5HX0EF L8X , 5HYDEFL7X,6HEXTSTR//

)

PRINT 600, { I, XDEFL(I), YDEFL(I), EXTSTR(I), I = ),J)

600 FORMAT (15, 1P3M3.2)

PRINT 601

601 FORMAT ( 1H0 )

PRINT 605

605 FORMAT (20H T0TEN1 6X.4HW0RK//

)

PRINT 606 ( TOTEN, WORK )

606 FORMAT ( 1P2E20.7 )

PRINT 800

800 FORMAT ( 1H1)

GO TO 190

710 STOP

END

SUBROUTINE SIGHA

ODIMENSION ALPHA(60),RETA(60) , XACCL ( 60 ) , YAGCL ( 60 ) , XVEU60),

1YVEL160), XOEFL(60),YDEFL(60),BENDM(60) , ANGL(60)

,

STRAINt 60)

,

2U(1),P(1), DDX160), DOY(60), XSPD(60), YSPD(60), X(60), Y(60)

COMMON INTV,J,TIMEINT,XACCL,XVEL,XDEFL,YACCL,YVEL,YDEFL,

1 AINTV,RH0,ANGL,REN0M,ALPHA,BETA,TIME,ECC,FAC2,F0RCE,C1,C2,C3,

2 WORK

U( 1) = XDEFU 1 )

P( 1) = ALPHA( 1

)

DO 10 I = 1,J

XSPD(I) = XVEL(I) TIMEINT * XACCL(I)
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YSPO(I) = YVUL(I) + TIMEINT * YACCL(I)

XII) = XDEFL(I) fC3 » (XVbL(I) XSPi (I))

10 Y(I) = YOEFL(I) + C3 * (YVfcL(I) + YSPD(l))

DO 20 I = 2,

J

20 ANGL( I ) « Y( I ) - Yd - 1 )

TIME = TIME TIMEINT

IF (TIME • FAC2 -1.) 25,26,26

25 ALPHA! I) = FORCt SINF(FAC2 TIME • 3.141593)

GO TO 27

26 ALPHA! 1 ) = 0.

27 00 28 I = 2,

J

28 ALPHA(I) = -(AlNTVft»2)ft( RH0»ft2)*(X(I )-X(I-I ) + (ANGL( I )»ft2)/2. )

ALPHA! J*l ) ^ ALPHA! J)

00 30 I = 2, INTV

30 BENDM(I) = I AINTV»«2)»!ANGL!I) -ANGLCI + 1H
BENDM! 1 ) = ALPHA! I ) * ECC

BENDM(J) = ALPHA(J) * ECC .

00 40 I = 2,

J

40 BETAtI) = IANGL! I )»ALPHA( I ) ) - (BENDM(I) - BENOM(I-I))

BETA! 1 ) = BtTA(2>

BETAU+1 ) = RETAIJ)

ODXtl) = C2ft(ALPHA(l) - ALPHAI2))

ODY! I) = 0.

. DO 50 1= 2,

J

DDXII)
'= CI»(ALPHA!I) -ALPHAU + 1))

50 DDYII) = C1*(BETA(I) -BETA(I+D)

DO 55 1= I,

J

XSPD(I) = XVLL(I) + C3«(XACCL(I) + DDX { I ) )

YSPDtl) = YVELl I ) + C3ft!YACCL(I) + DDY(D)

XOEFL!I) = XDEFHI) C3»(XVEL(I) + XSPD(I))

YDEFL(I) = YUEFLU) + C3»(YVEL(I) tYSPD(I))

XVELII ) = XSPD! I

)

55 YVEL!I ) = YSPD! I

)

DO 60 I = 2,

J

60 ANGL(I) = YDEFLII) - YDEFL(I-l)

WORK = WORK + ( XDEFLID -U(l))ft( P(l) + ALPHA(l))/2.

RETURN
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APPENDIX IV

Failure Data

Tabulated in the following pages are the failure data for the

three slenderness ratios for all values of B which were investigated.

These data are the x and y direction deflections and the extreme fiber

strains at the time of failure, for the minimum failure values of P, /P£ .

The strain values given are the strains half-way between the point for

which they are listed and the previous point. Thus, a strain listed

opposite 50 per cent of the length is actually the strain at 47.5 per

cent of the length.
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

*•

S SB 5G T = 5.33

£>=• 0.1 AT = 7. 8Sx/o' 4

\/\ = 0.930 n = 20

... u

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

9<&b x/o' 3- O

5 f.O& 0*194 A/o~ J 0.441 X )o~
z

10 S.4C /*37 0. 5*37

15 i»fp <2* 00 0* 6>Z6

20 7.2<* a, ?9 d, 71 4
25 6, 86 3. n 0. 79 1

30 6,4o 3.S>£ 0* S6S
35 S.97 3.9/ 0,914

40 f.f7 4-/7 0*96'(o

45 S./9 4,33 0.986
50 4.83 4,38 J > 00

55 4-44 4,33 A 00

60 4.o8 4.J7 0.986
65 &M 3.91 6.96'6

70 3.2t>
, 9>tt 0. 9/3

75 Z.&c 3-// 0.867
80 Z.3o i-.n 0. 79o

85 A 7* a, oo 0. 7/3

90 1.19 />27
95 6*L&S 6.&>94 AV'i&A

100 O O* 440
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Wilure Deflection and Strain Data for Minimum Failure

Value of Pj/Pg

S = 50

/9= o.z

?i/\ .= 0.93O

T -3.08

AT = 7.8S */0~*

n = 20

%

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
filler
strain

9.4/ X lb~z

5 8-8/ 6.7/b X/o' 1
o» 4/9 X id'1

10 8.Z5 U4-f. &>£/&
15 7.1*7 SL.D7 d,(o/4-

20 7./

4

Z,6>7 0.7&3
25 6. 66 3.ZI 0. 783
30 k.ZI 2,&>7 A.bft
35 S.79 4.03 A*II

40 f*4/ 4,30 $* fS'S

45 5.0lo 4:47 6.786
50 4.71 4.51 /. 00

55 4,37 4.47 /,06

60 4.0/ 4.30 drt&f
65 3.63 4-. 03 A.9^
70 3.ZZ a,t>7 artiZ
75 2.77 3.21 r>.8£4-

80 x.zs 2.to7 D.785
• 85 />75

,

$-07 0.7*5
90 A/7 i-tl D, 6>U

95 6. 60/ 0.7tic D.S'XI

100 O 0* 41?-
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

s = so

0- 0.5

P
1
/P

E = Loz

T =r /.4-5

AT = 7.85-X/o- 4

n = 20 .

Per cent of
length from
loaded end

Longitudinal
deflection

K/£)

-

Lateral
deflection

Cvt /fi)

Extreme
fiber
strain

9*O0 K/0"
Z O O

5 8,4-/ D.765' x/o' 1 6,585 X/d'z

10 7.84 1.4-1 0.44/
15 ist* 2. /B o. 593
20 i.i* £.82 D, 4,88

25 £»3I 3.39 A, 77^-

30 5.&8 3.8 7 6,847
35 5. S'o 4,2<e O. 96&
40 jr./f 4.54 6.954-

45 4-. 83 4.7/ A.985
50 4>.5/ 4,11 / > 60
55 4,10 4.7/ /, 00
60 3.88 4,54- G. 985
65 3.53 4.25 n. 955
70 i. 14- 3.87 o.9o9
75 Z. 7A 3.39 0.84-9

80 a. a4- A. XI 6.77 <* ._.

j

85 1$ 73 SI, IB 6.6 9/

90 /./& hW 0.1,59 7
]

95 0.597 0-756 0..4-95

100 6.3 89
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/Pg

S = 50 T = 0.837

&= 1 AT = 7.85 K /0" 4-

Vp
e = £.4-4 n = zo

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection
U/H)

Extreme..
fiber
strain

6*9/ X/0~
z o ::

5 Z.3Z to.'75'ZXJd- 1 0. 356 x /fi~z

10 7.19 /.49 0,4>L*

15 7,21 f,/A n, £74-

20 <*.in &.&& Avtva
25 L.Aq 3.3*5 o,1(*2

30 59o 3.87 r>,8Z8
35 5,53 4,A£ o. 9oA
40 5, IB 4,54 0. 9fo
45 4-.8t> 4..1I 0.183.

50 4.wr 4,l£> t>. 999
55 4.14- . A.io h &0

60 3,92 <L,53 6.985
65 3>$L 4»Tf 6. 955
70 3.W $>&L 0.9o9
75 2,14- 3.3S a. 851
80 £,££, A. St 6. 719
85 A7f d,/8 0. b9t>

90 ).l? h+8 &*(>6d
95 O, 66/ 6,753 6.6*1

100 O O 0.195

43



Failure Deflection and Strain iData for Minimum Failure

Value of Pt/PE

S s SO

0- z

T i= O.ZZZ

^ = 7.8ZK/0
-4-

\/x
z = J.V8 n = 20

Per cent of
length from
loaded end

{«

Longitudinal
deflection

—
Lateral

deflection
Extreme
fiber
strain

/.75 x/<r' O

5 A&4 O-foZ X/6~l 0. 8 3Z X/o-L

10 A 54 o.9of 0.838
15 A 45 A 53 6, 843
20 A 4-0 1.4-7 o, 8 47
25 /c3Z l.(o4- 0. SS'o

30 /.<24 !.*)£ &, 8*2
35 h/f A 5/ a'.*A$

40 J* 07 A*4 t.&S'*
.45 7.^ x /^"*z /.Sic D,8£t>

50 f/tfV A ££ 6, 8£9
55 8-/4 A^ D,Rk£
60 7^7 /»"&* A.*?l
65 4*^0 A 54 6,89/
70 .iiv A 77 o.9jt>

75 4-.(cl A^ o.93o
80 3.70 A<£< t>.4£t

85 A. t7<1 h3Z ^•m
90 /.&L> Q.9&6 &.<?£*

95 D. 93Z diffZ c.3 9

S

100 /, 00
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

P
1
/P

E = 1.4.4

^T = 7..8SX/0-4-

n = 20

Per cent of
length from
loaded end

—1—
Longitudinal
deflection

Ua/4)

Lateral
deflection

Extreme
fiber
strain

us&x/ortt O O
5 h4* 2.68 X/0' 2

0. 6>AO A /o' 2-

10 J* 43 3- 4-b 6.64-Z

15 t.M M4 6>b(eZ

20 /,8o 4-, 33 O.bAo
25 ua* 3.J8 CblX
30 /, /7 3.2.5 6,7o7
55 h JO 2- 31 6.7/6
40 hoi L34 0.734
45 1.41 XJb" x 4.11 X/0' 4 6,71*£
50.. 9*70 - 4.7/ Kib'^ d.79f
55 >7,9I -z,ai a /o~* Ok 8/

8

60 %/o j: 8% x /b~* 0.824
65 6,27 7./(= X/6- + 6.64$
70 .<.+3 /.£>& X/b'3 6,853
75 4.^7 A, 60 D.&&>£>

80 3,6>8 3.40 6.9o/
85 g,y$ 3>7B

,

0.93*
90 l.$L 3.48 D. 9 IS*

95 b.9Af 3.48 ^96P>
100 O /*£>0
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Failure Deflection and .Strain Data for Minimum Failure

Value of P
t
/PE

S = 50

0= do

T ~ 0.389

^T = 3.93 x/0
-4

\/\ =? /./* n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fi'ber

t

.'

strain

- /.:/(> x io" 1 3

5 - A/6 - /. 34 X/o~ 3 5.4-3 KM' 4-

10 - /. /4 - <5,^ £>* /ST Xn- 2-

15 - /./Z -2,£9 D.&47
20 - A70 - 2,&o d,3£L
25 - /.&'£ - /.44 0<393
30 - /.02 £.&/ X/o~* o> 4-5o

35 - </V7£ j/a" 2 " a,4$ xit"$ 0.49L>

40 -*,« 6.78 0* fi8
45 — <?« 6 c5 /, O I x /o

~% 0. 583
50 -/.Of /.&<! O. 67/
55 -7.4-/ /.4+ 0. 149
60 - £,70 /.43 D> 867
65 -^fii /.2& 6.837
70 -.£/£ q,Ao x/o~J D. 839
75 -4,35 siap 0* 8Z0
80 -#« A 49 t>-8bSi

85 - *>, 70 - 1*34 6. <?<*>?>

90 - A £2 - 1^7 D*?8Z
95 - 0. ?aT - A, of /*oo

100 £> 0. 99/,
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Failure Deflection and Strain Data for Minimum Failure

Value of Pi/PE

S = #D

n = eo

Per cent of
length from
loaded end

Longitudinal
deflection

K/4)

Lateral
deflection
U/£)

Extreme ..

fiber
strain

- ?>23 x/b" 2- o o "5

5 -9. SLA. if
- A 57 A

/ /(5""i /*<?/ X/d~ +

10 - 9.%o -3, £2 r0,49
15 - ^AfT -^7^ 4>,bfi

20 - 7, 0fi - /££ d»//9 X /b' 2-

25 - 8.98 -7..T7 b*/9o
50 - 8.82 — to.Q. (e 0.25X
35 -8,63 -3,30 />, 4 7 8
40 - £.36, 0* 634- 0. &87
45 - £,03 4,3f 6.37L
50 - 7.U t>.&7 d*£/ S
55 -7.11 . 1.3& A. h/9
60 ~6.£TJ S.78 />, 6 97
65 -S,8L A. 4-9 6, 7^3
70 -s-.ii - /. W » tm4-
75 -4,3a ±£.B1 a. sa(c

80 -8.41 U £.77 3,9*10
85 -£,64- - ?, 7^ D. 9>7£

90 - 1.78 - 5.4J /sOO
95 - 6* 892 -^ *£ D. 99L

100 D 0.97^
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

S = 50

\

T .= s0. /70

0- 40 AT = <?.8Z X/Q-*

pi/Pe - A 14t

n = 20,

Per cent of
length from
loaded end

(fo)

Longitudinal
deflection

(
V4>

Lateral
deflection
Ut /j>)

Extreme
fiber •

strain

4. 6a x /o~x O
5 4,66 /.£3x;6- 3 3.93 x/d" 4-

10 4.61 a, as 4.na
15 4. Co £.98 £,41
20 4-.1M *.4to s'.at*

25 4-,63 3*66 6.77
30 4:5% 3. J£ 3.68
35 4,63 A, 33 A, 36
40 4,%6 A6o l.&L
45 4,m 6c 843 6Z44
50 4,6>I £>*461 4,an
55 4,6>3 0*444 4,2.0

60 4,68 £>» So 6 &.4I
65 4,43 J.A4 d>*/60 X/D' 1-

70 4.16 U41 0>£8£
75 3.7L J,4I n.4/l
80 3.A6 /*£4- 6* 5c 4
18 A.t>l t./n 6. 663
90 7.64 />%l 0. 716
95 0. 943 Oc9Bo 6*443

100 c /• 60
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = SO

0- So

T = 0. 037

S

AT ~ 4.9/ x lo~*

i/PE *? /w6 n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fi'ber
strain

. A. 32. x/o" 2- O O

5 fi.ASL /•£>3 X/6- + 3.43 x/o'Z
10 3.Z3L 3.IZ £.3L
15 z.aa 4*4$ £,67
20 £32 S.34 S**t&

25 Z.32. '£.& 8,oo
30 £.'& f,Z4 7,10
35 &,33 3,17 7 So
40 £.33 I.9S />&>8 Kit' 4,

45 %.#l - o*4LO 1,84
50 a.ai - z.m 6, So x/d*'*

55 a.aS -5.10 4, OO K /0~^

60 %.A) -2,ol 4*2.0

65 C$,38 OsfUS* 3,3c,

70 a. ,?# /.<?/ S,l>L

75 4,31 A/7 £,33
80 £,37- *o*S$S S.4-1
85 £ , /J2 ,- Q\faZ*X <%, /$ A/*~*
90 J. 18 /. 8t> 4> 43
95 0.9+7 4-i oo 1,S3

100 l*oo y/o "^

•
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/Pe

s = 100

P
1
/P

E = l.oZ

T = S.bO

^ = 7.85 x/o

n = 20

-4-.

Per cent of
length from
loaded end

Longitudinal
deflection

Ui/Jt)

Lateral
deflection

Extreme
fiber '

';

strain

/. 97 X/o' 1

5 /.1(* 0. 181 3,3e X /b~ 3

10 /. (oO 0.Z1O 1.7£_
15 J.4-3 £>, f43 S.4B
20 /. 3o 0,163 f.OQ.

25 1. /S 0.84-5 7.44
30 /c n o*9(o1 &*nt
35 /.04 /. OU <ti£l

40 hol /. /4- 8, 57
45 9.97 Alb"'L /./* ?,?<?

50 90.6* /./<? 4.21
55 9.6 6 /./& J.oo a /o' 2-

60 9.4-9 /,/4 9,3/ X/o ~3

65 <?.// /.£>£> 9,29
70 tjSm O 5 ***M A. 33
75 7.7o t>.$45 782
80 6.&C o, 1*Z 6>-Lo

85 f.ai &64& *f* 7/
..i 1 j- '—*.*-_

.

90 3,U 0. 870 4-33
95 /.£? c>/$7 a./4

100 D Z.74.

•

V
,-.»
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Failure Deflection and Strain Data for Minimum FarLlure

Value of P
t
/PE

S = joo

@- 0.2

Pl/PE ?= i*05

T = 3. 47

AT =s 3.93 A/6

n = 20

-4-

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

<2.69//D~ J O o 5
5 /*S9 6si¥ff hl>3 X JO"3

10 /. 7o v,28l> 3* 04
15 ti&l 6, fi>t> 4:39
20 t.3& o, 722 S* (o£>

25 /*&£> o. 8 Si £>,8Z
30 /c/7 /. 0/ 7, £3
35 'tin UN g.tol
40 /.o7 1.19 9,32
45 /.of p.M 9,1 L

50 /.64 /.25 9,99
55 /.63 . /.A* J,60 A /0" 2-

60 A 62 A/7 9,7fi x/t>-3

65 9Wf'XNtP /.// ?, az
70 A>/9 /*£>/ 6,7*
75 fi.&f A, $£3 %S6
80 7./0 0*734 &.8C
85 S.t>£ h.&M sf.70

90 3,9 O o*386> 4.44.

95 <2. oo 0,/9(> S.ol
100 o o A AT
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/Pg

S = too

&= 0.5

Vp
e = l.dZ

T = 1.58

^ = 3. 93

n = 20

X/O
-4-

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

2. to X /{>-' 6 6
5 A 90 0.J97 LSI X/o' 2

10 A 7/ 0>3S9 A.4*
15 ait* 0,Zl! 4.35
20 a 39 fi<739 5,lS
25 A 57 0.8Q9 6. So
30 A/j* />o2 7.9Q
35 /-/a t./a 8.68
40 A d5 U&Q 9*33
45 A £6, I.SL4 <f,7R

50 /.^ U^L /.00 X/d~ L

55 /.^ i.'ibi toOD

60 /«-44 /.do 9.77 A/t-3
65 ?*££ tcsii* t*/k 4.ASL

70 9.Z7 /.*>& Z.67
75 $.37 D.B&9 7,93

80 7.17 o.74o 6>£2
85 5*6& 0, 57/ 5.U
90 3*94- fi'36? *>57
95 SLrdSL 0.(17 8' DO

100 o '/. 57
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/Pg

S = JDO T ==

AT =

0.9a i

3. 93 x/o

n = 20

Per cent of
length from
loaded end

{%)

Longitudinal
deflection

(•ttt/I)

Lateral
deflection

Extreme
fiber

8train

3L>Ho X/d~ / O
5 j.if 0.2o3 /.2£ \ /0~3

10 /.76 0*4-00 £,73
15 A5Y d>,6£8 4*t5
20 j:4& <o, ni>i .S.41
25 t.M o. 9/X 6.70
30 i.ao /, QS 7.7 L>

55 hU 1. IS 8.(o3

40 U/l ! * S3 9,3/
45 J.o9 1.0.6 9/77
50 /.oS 1.Z9 UOQXIb " 2r

55 /.OS J.&A ! . DO
60 /.0(c i.aa Q.llX/b'*
65 J*o2 /,/£ 9. ID
70 ^tZX/fi"* J* OS A, 64
75 8*70 fi.914- 7.77
80 7.U 0.74,0 6.-7J

a a S*9/
, , Mj&qj. , , , S. fZ

90 4-. lo ^319 4L,£x>

95 £./0 CZoX £-7?
100 O /*33
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Failure Deflection and Strain Data for Minimum Failure

Value of P,/PE

s = /CO T = 0.S9S

e= z

^/PE = S./c n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection
CnYA)

Extreme
fiber '

.

strain

,

, ,,j,

^. /<£ x/ 0~ f 6

5 /»?/ 0*£o^ D*8?>8 x/d' 3

10 u-Tsl 0.399 A. 4*
15 /. 54- 0.5tit. 4..01

20 /.4>0 0. Tf9 f+3?
25 /.is o.?o9 &.£i
30 A/9 />t> 4- 7.4(o

55 /o/J 1./4- £,<24

40 /°/0 t.$k 9.90
45 /.as j.nn 11 441

50 /.OS h :M 9.$/
55 U&7 /*&7 1,60 X*

6-"^

60 /•65 A A3 9,96X/*-3
65 /.02 J./S mo
70 S.&x/*' 1- l.&4> 8.89
75 && 0.9a9 %S6>
80 %3C frjArt 6.&J
85 S.8I Q<$®l jr.27

90 4-,ol 0.31$ S,9o
95 2\6Z 0>£dO CL.5-L

100 O l.a&
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Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

p /pe = %ZS

T = 0* 7o9

AT = J. 93 X/b

n = 20

-4-

Per cent of
length from
loaded end

;(«

Longitudinal
deflection

Ui/4)

Lateral
deflection.

tyt/ft)

Extreme
fiber
strain

/. &3 Kto-i

5 USfo /.asxso-^ 7*93 x/o~3

10 U49 Si. II 8.45-

15 lo4l £.£3 9.7S
20 /.34 &*44 8.17
25 /*Q(? &&U B.ZL
30 /./& /.38 "ffclCi

35 A/7 £.39 X/6-3 7> 88
40 /*t>3 £>* 1 14 8*4-o

45 9.47 XI to"
2-

- 3.84. s*n
50 %.U -4.92 i.9k
55 7-B4 .

- a. 91 #.£>/

60 7. oo 1*34- 8.91
65 6.U 1-11 8.7Z
70 ~&ao K2%Ktb-*r 4ii>4

75 4.42 1.8k $*/£>

80 3.ZL £./<? 9,&
IS 4.f& *>ao 4.A4-

90 U79 /•S4 /. OO K/b- 1-

95 O.M7 /,69 9k19 x/t>-3

100 9,76
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

0= 7

Vp
e =? 7. So

T = 4. 7?x /o -z

AT =j 3.93X/0'*

20

Per cent of
length from
loaded end

{%)

Longitudinal
deflection

Lateral
deflection
IV*)

Extreme
fiber
strain

/. 6/ Xio" 1 <9

5 /oS4- c?.<9? */d -3 7. DO X/6-3

10 /c 4-6 ^57 7./3
15 /c4-l fU7 n.ao
20 /<34- ZsZf 7. as
25 /.&? &.£f r.ai
30 /c/9 /.£7 7.44
55 /*/£ 2;&*Y/o-4 mu
40 /.o4- - ,*,4* 7,79
45 f.&f X'0~'1

- - £.3£ 7.13
50 8-81 - 7.4* k*6b
55 7>99

,

- 7<£a 8.£c

60 <7.JL - 7.55 8.3C
65 8.32 ~4>(*1 fi,5-3

70 S4-L /•53 9,7o

75 4->S<? /.^y */£-? fi&S
80 3.7o A^7 e.?3
85 cQ* 79 .?.*/ 4,£o

90 h 97 9>tt
95 <?,Z7X/D-3 ^« 9iSi

100 O /,00 XID" 2*
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

s — /oo

VPe- S.7S

T ~ 4. 73 X /o
-z

^ = A 9 6 x/0

n = 20

-4-

Per cent of
length from
loaded end

(0

Longitudinal
deflection

•

Lateral
deflection

Extreme
fiber
strain

. US4.XJb
jL
i o

5 U49 cZ. fox/fi-2 (c.SLf X/0~ l

10 A 43 4.39 £.4/
15 1.3L 4.L1 (off/

20 /.do .?, 90 (fie (ek)

25 I.Z3 &64* (r>.7A

30 /./(, /.ai Z*9A
35 /.c9 &.&S X/D~ 4 7.26

40 (.da - 3, (oZ 7.41

45 9.46 x/o-
1-

- l.si 7,SR
50 &V8 - 7.49 7.7JT

55 7.B9 ~ 7.8/ 7.94-

60 7,08 - 7. 37 6J4-
65 6,&L -4,89 3.33
70 S.4Z /.£$ e.*r+

75 4.61* /.Z.I X/d~* &.v!
80 z,(e8 £,<ot g.m
85 £> 78 <2>8? 9c /4

90 /<&&>
,

4-> 34* 9,SA ]

95 fi*934 3*21* 9.84*

100 o o J.£>0 X/6 " **

51-



Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

s — /DO T = p. 488

^T = /.3/*,o

n = 20

-4-

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

IV* >

Extreme
fiber
strain

VoBbX,^ 3-

5 1.83 ~/.77 X/D' 2- &.15 x/6-l

10 7.77 -3.ZZ /o93 A/d" 3

15 7.to8 -4,d>4 suft
20 7.tt -4. II 3,48
25 7.3& -3.41 3,13
30 7./X -3..QZ 3,79
35 6.67 - O. £t>3 J, (,3

40 6.5S U4S 3.19
45 6. If 3. as 4.47
50 £.79 J., SSI &.t£
55 S*.3f 4-.8C • ?;«
60 4-.S8 4.64 &.61
65 4.3£ a./e 7>£L
70 .3.78 - ca&$ <£>>£8

75 So/e -A, 74 i.vsL

80 A. £7 -4>57 8*73
85 /f 9£ -f-ll 9, It,

90 Jc32
. -*<Jf /*OOX/o-~*~

95 ». U9 ->*•+(* 8<9/ x't'S

100 o 7,C>I
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = /oo

6= ZO

T =r 0.478

^T = ?, Bz Xh -5

pi/pe 5= 3. fo n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

K/Jfc)

Lateral
deflection

Extreme
fiber
strain

9.98 *'d"H o

. 5 8*93 -/. 4-S K/b'*" 7*3/ x/o"t -

10 9.83 -Z.64 £,o6 X /D~3

15 8.6>7 -3-37 3,07 -
20 9'H -3.54 3.83
25 8./f - 3.1

6

4,22
30 7-97 -Z.23 4,(ob

35 7- So -o.es/ 4,10
40 Zo9 0.&/C 4,44
45 fa, b4- £.41 4,14
50 (Cdl 3,76 6.44
55" ,<L& 4.£o 7.73

60 j.h 3.67 £.31

65 4-.6>o 1.93 7.9 1>

70 .4,oo -0,366 6*73'
75 3.ZL, -A.C3 7*o?
80 A.7SL -4.23 ft 6$

nm 85

90

3,67 -4.70. UOC A//5
->

1* 4o -3.17 1.97 x/0-3

95 &7ASL -4. £3 9*60

100 & o 7.34
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = J oo

#= JO

T as D.4C9

AT = (,.5-+x/6

n = 20

-J"

Per cent of
length from
loaded end

Longitudinal
deflection

(yi)

Lateral
deflection

Extreme
fiber
strain

1

&#9jfM* *...
;

5 8*9t> - /.2.0 x/cT^ S. B2, X/b' 4-

10 8,&(o - 2-2LJ /. t>7 Xll>- 3

15 &.72 - 2,&9 a.s&
20 8* $3 -3. / + 3,2.3

25 8*So ~A-9Z 3.71
30 8-oQ. #-A£4> '4k i%

35 7eG8 - /. JO 4-. £0
40 7.3o 0. 4-o8 &4-L
45 6*8$' 2*0 / 4.4,0

50 6>.3(> 3.3o 6.41
55 £.84- 3.&4- 7.91
60 s.ai 3.3C fi.£>A

65 4.^1 USL R.43
70

. 4*o& - o.£82- 7. as
75 3.3S .

±2*44 7.31
80 £.69 " 4.61 ?.oa
85 oL.03 - *.*7 J. 00 X/O"'1'

90 fJA* -3-17
, ,
q.& x/o ~*

95 £>.(*%( -Ac Jo Afcf
100 7>oo

60



Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/P6

S = / oo

&= 4,

T = 0. 46>7

AT = 4,9/ X /o~S

Pi/PE ^ 4. /o n.= 20

Per cent of
length from
loaded end

CO

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

8.48 Kib- 1- O

5 Si.4t> -O. G55 K'o' 7- £.?7x/or+
10 S 4-/ -/. ai G * Iff (p

15 8.3/ - 1. (cZ A^A//)" 3

20 S./7 - /*Q(o <Q.&4

25 7.98 - 1. 88 2.63
30 %7(* ~ /. (cO 3. /S
35 7.£o -0.98/ £.£>/

40 7.SL1 ~3. /ox iti~* 3.&S
45 (0,&1 /. 1 O X /A' 7- 3.3 k

50 6*4-$ l.o9 4.77
55 h-Oto a,S6 6.2/

60 .<kf 4,27 GiBf
65 f.ol U&'A 6.9/

70 .4.6o -0./63 6,38

75 2.$& -I.L>5 G.76'

80 3./7 -Z.73 fttt

^_ 95 JL4t?
. -.^.f.P.ft- , 9r70

90 I.CS -Z.6>Sl / o 00 X/t)' 2*

95 n.84l -1*47 9..jix/r*
100 8.47

61
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

s = JOo

e= so

p /i>E =4.60

T = 8. 48 K/b
-z

AT = Z.4S x/o

n = 20

-s

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection
Cn/£)

Extreme
fiber
strain

4»6<o x/o- 2- O
5 4-.& -Ooi38 x/r z

£. 87 x/d~ *

10 4.&2> -L04 4~ 92
15 4.ia -0. &S.& 0?, cP <s

20 4. do - 3. 36 x/d'^ a*. £>/

25 4,b1 Dc /i-8 X/£>~3 3,. ?i
30

4.\f£>
flc /63 I.3LI

35 4.£? 0o4o3 .i.aQ

40 4-.& Jo SI p,.m
45 4,(o4 $.xs 4.5-4

50 4*LL 4.33 S.49
55

. 4*4,8 3.?,? D* (oO

60 •

4+ttL Z.3<? 7.4J
65 4.4L 00820 /.£7 y/0' 3

70 Mik -0-323 A 84
75 3\ 78 - 1. 3* 4>/o

80 j.af - A. oS S*$D
85 &Li -£-e? (o*70 ,*5 -,....

90 L8£ - 1. 83 ,__ 7-9A
95 6. ftfo - 6. US Z/o-
100 /060 x /z>~ y

•
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

.8 = /SO

Vp
e =1.04-

T = S.9/

AT = Z.tz X /
.-*

n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection
In/A)

Extreme
fiber
strain

4- B^ x lo~> c o

. 5 4 0.36& 1.2.2. X /D~2 * *>

10 3.87 6. &0

5

A, 71

15 3. 47 6.889 4. 14 L
20 3. IS A 15 jr. 4-8

25 £.84 1.3 8 6.6?

30 J. 6,4- U£8 ^7.76'

55 JrOl 1. "74 8,t>3

40 £,44 1. 8(o 9.31

45 £.41 U K 7*77

50 £.4o )>n /.DO X/0
~*~

55*
J«39 1.93 A oo

60 J.3C 1. 8G ?.7(>A/t~3

65 £.21 l>74 9.2?'

70 2.J5- I.S8 8.6/

75 I.9S" /.38 7.73

80 /. 18 1. /S b.(>7

85 1.33 6,888 S.4C

90 9.23/ /o' 2- 0, 6o5 4./X

95 4,75 D.3o(o 2. 70

100 o 6 hXX
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Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

s = /50

Pl/J?E = /./Z

T =3.3/

AT = 2.tlx /o
-4-

n = 20

Per cent of
length from
loaded end

10

Longitudinal
deflection

U\/4)

4.8/ X/D -I

IlSA.

S.SS

Lateral
deflection
U/£)

6

Q< 3*7
O, 6>0b

Extreme
fiber

,

strain

/.2t x/o~2

AJ.lL
15 3*£L 6. 8?o 3LJA.
20 JU2. A >$ o '^4A
25 a* R5 /, 39 AiJlL
30 J&4 A S3 7,7£
35 JL£L l*7f iM.
40 J. 44 h8t> 3±dL
45 A. 41 h.93 SLLL
50 AJte- A±L /. do y to -z-

55 ^^2_ /.9,j /. 66

60 tK'i5b A #£ ft 76 Ktd'3

65

70

«3-<?? A 74

&/

6

/.S8 AlAL
75 1*9$ , Ai£ iZl
80 A<^ AZ£_ j^^Z.

90

95

M.d73? o* B89
9-My">

-L,
6. (cQ5

+.74 0, 36(o

S.4$
4-./Z

JLA3-
100 d A*?/

64



Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

S = JSo

0~ 0.5-

T = /. 73

/6
-4-

n.= 20

Per cent of
length from
loaded end

(JO

Longitudinal
deflection

K/4)

Lateral
deflection

Extreme
fioer
strain

4,89 x/o-/

—J

—

10

15

20

25

30

35

40

45

50

55

60

_65_

70

75

80

90

95

100

AiZ.
3*9t>

A,S7
a, so

a. 43

A£5L

-L2A
-MZ7 -

JL81
o

-2.

o*$9 8

CMS

J. 4c

A 6 o

1,88

f.fi>

t*98

1-69

A 77
/. £/

1.41

A/7
0- 9 04,

6. (olio

Q

-2-

Jl3£
JL2Sl

6-48
JLlk
8-48

£l3£.
8- 1

8

7-77
&.7£

\M-+ I

J. Jo



Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

s = /fo

0= 1

T = 0. 9 66

^ = 2.6Zxr/ o

n = 20

Per cent of
length from'
loaded end

Longitudinal
deflection

Ui/4)

Lateral
deflection

Extreme
fiber
strain

s:oa x/o~/

5 4*&*> 0.3/5 .A.89& X/o~3

10 4.o5 0, (o32 r2.4-l

15 3.6,3 0.9/4- &&*
20 U » Oi fa 1*18 g<an
25 a.97 1.4-1 b,£4-
30 a.vL i, (c3 *7>&>£

35 St (p°i /.79 8,57
40 c5«, 6 d /. 92 9, £8
45 2,5*2 A 99 9.U
50 A57 3. oi /. oox/o' 2-

55 3. SI K'9<* /. 60
60 ^<W /.9X q.*iixkr3

65 ^.^/ /. 79 9*an
70 ^0<57 /i43 R.S8
75 <&££ /ua *r.i>7

80 /.nL AM 6. ,58

©g J.40 n.9/5 <S,3&

90 9.73 X/
0' 2- 0.&23 3.94

95 4»?fi> . o.a/S Ja.:+i

100 0. 93B

66



Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = /fO T = 6.60/

n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

( u.,/4)

Lateral
deflection

Extreme
fi"ber
strain

4. SB K/o~> D

. 5 4.4-1 0. 307 0.742 X/0~^
'

10 3.9i> b' &>ob £ B Z2
15 3*s£ Ds 891 O e (do _

20 3.3c /. If y. da
25 a. 93 /.39 t>.£o

30 &. 7*1 A3? 7. £4
35 £.f9 A 7C 8.14

40 £>5I A 88 8.91

45 £-48 A ?S 9.5-/

50 £.4-7 A 98 9.89
55*

&+J /.?& /.DO K/6~ %

60 1-44 /.8? 9.84x/6~ 3

65 3*3 7 A 78 9.3 9

70 ^<34 /, (ol 8*70
75 3.63 J, 41 7.83

80 1.75 A/8 6.82
85 £39 $•?(( f.6>t>

90
f. TAXto** 6ofo£/ 4.34

95 4*99
'

6,$if £.83
100 Z) A/?



Failure Deflection and Strain Data for Minimum Failure

Value of P^Pfr

/So T = 0./S3

*.= S AT = Z. 6>Z X/6- 4"

Vp
e = 11.4 n = 20

Per cent of
length from
loaded end

{%)

10

15

20

25

30

55

40

45

50

55

60

_65_

70

75

80

88

90

95

100

~—

Longitudinal
deflection

9.S&X/D

8.71

7.S4-

7.QZ

t>.4 +

5.4-SL

5.02

+- >'5

3-tf

£,o4

!.£>

D

-2-

T

Lateral
deflection

A*7
l.(e(o

LI5.

- h 0(
- O'kLA
- 0.4-47

Q-I3L

6. 0L0

L£l
• --*

L£a

-i

Extreme
fiber
strain

JLlH
JLJ2

9> os
jL3£
-&A3.
G>.05

_£«J^

_5LI3
7-*7

-&J1
-£S1
4<¥4
7.Q?
9. 68

-A<JA
O* to 5

68



Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

S = /S'D

0= 7

p
1
/pe = /4.0

T = 0.//S

AT - A 87 x

n.= 20

,<>-<

Per cent of
length from
loaded end

(#)

Longitudinal
deflection

K/x)

Lateral
deflection

(v,/fi)

Extreme
fiber

8train

/. ok X/o" / O D

5 /. £.£/ /jo" 7- ,07 X/d- 2

10 9*f3 x/o' 2-
/. // A /d"/ 7.4-L

15 9o /o A 37 R.9L
20 £*7o /-3L Q.4-X
25 frSf /.OR R.7L
30 7,7! (o.OI X/o" 2- 7 0S
35 7./

3

6.ZI? 4.72
40 6:& -4*9 ft 6.31
45 (n.6£ -8,67 A, 3?
50 d£f &0 - ?. 9(e 9.S4
55 5, /3 -fi.Ll 9.S3
60 4<.ib - 4.9L 8,42
65 U. 7 / 0./U £>.$/

70 ^37 &(e3 x.an
75 1.7$ /• oaxib- 1 7.51
80 &.3L j.2o 7.21
©g /«7A J.3& /. oox/cj^
90 /.f? /.67 f. 76 X/d"3

95 6,6>7b k.Ot, X/d"
2' £.48

100 Go4-l



Failure Deflection and Strain Data for Minimum Farllure

Value of Pj/Pg

s = /So

0- /0

T =

AT =

7>Z3 X /*
-z

J. 3 1 X/0
~4-

Vp
e - /6.7S n =20

Per cent of
length from
loaded end

Longitudinal
deflection

A 43x/d" /

AJUL

Lateral
deflection

Mixto
-x

Extreme
fiber
strain

£i.£jLX1£L
10 /.3I 4^7 %4l
15 /'2$ S*lo RiOO_
20 iuS. 4-.8B 8./Q
25 A /3 ,7*77 7< 8£
30 A<P6 A* 07 Z-jZA-
35 9.94-xio- Q./S? & c (oS

40 f-35* - /-59 !LJUL
45 A£iL - J-8Z &JA
50 7L£4. 3-3o O" (o°k

55 _Z,iA »?-74 g*£0
60 £. ^fl - /.or ff, £3
65 jr,^ ^_A^lAlA± 8-/9
70 ^i A £4 A /<?

-2. %£7
75 4.Q& 3> 5I 8. Si
80 3*W 4-.U 2jAL
85

90
£*£L. rmr-r— t » 4»<gg

Aii_ A /£,

95 .84c AslAJL fj. BoX'Q
'3

100 ?»/f



Failure Deflection and Strain Data for Minimum Failure

Value of Pj/PE

S = /So

0= /£

Pj/Pg. = J3.0

T - 3./o X /0
~ 2

AT = 8.73

n = 20

x/d
-£

'

Per cent of
length from
loaded end

(*)

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

AfSxt^ O
. 5

. ,,-Af.f 3.£>9*itr* biSSX/ol*}
10 /Ua S.o i &>c 4U
15 /.3 n 4.4o (cc t>3 .

20 /.3o $-7£ &.£%
25 K3& 8-9/ x/b-* 6.7$
30 i>/7 - 3.8R 7.0X
35 A/o - 8.74 7*&4
40 AM - 7.3£ 7*4-o

45 9.4-8 x/o-'1' - 3.12 7. S8
50 8.7/ A/7 7.7£
55 79/ 3.31 8- oo

60 Z/o A« 8./7
65 <p*ol8 -3.7/ O' o>l8

70 JK43 -7.U 8.54-
75 4.6^7 -4-.2L 8.93
80 3*6>8 &*89 9.03
85 a. 78 a.9o w* 9.D7
3C 1.8C 4.^

... ..
i

9.43
95 0.931 f.99 &8%-

100 z> O /, 00 X JO''2-



Failure Deflection and Strain Data for Minimum Failure

Value of Pj/Pjr

s = /S-o

0= Zo

T ~ 3. o4 X id
-z

*T = 6.5 4 X io -S

P
1
/P

E
= //.% n = 20

Per cent of
length from
loaded end

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

/. 48x/d~j O o ^r
5 1.4-3 3* £2. *;o~2 5*. / 6 *7S*3

10 /.38 4*94 5*5o
15 /*?>£ 4.47 5.72
20 /.M 3,84 5.88
25 /.£/ 9.5-fx/o- 4- U04
30 /*/4 -4.o9 £«45
55 /. 68 - 935 6.73
40 /. 0/ - 7,7 L L97
45 9.36 x/b- 1- - 3./D 7. 3D
50 &.&4 L34 V.45
55 7*®7 3.6/ 7.7o
60 7. Of J. 84 7<95
65 fn.%7 - 3./o7 A./6
70 .5.44 - 7.97 8.47
75 +,5-7. - 5o3 B.65
80 3,&S 8.59 9.07
18 £.7 7 3.0 1 X/«~ J 5.c9
90 A£f 4.7/ Q.44>

95 0.93o 4c/

8

9*84
100 D A OO XlD ~ *-



Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = /So

P
1
/P

E = 8. 40

T = 0.4O+

Per cent of
length from
loaded end

Longitudinal
deflection

K/4)

Lateral
deflection

Extreme
fiber
strain

9. 7 9 x/c " *"

5 9. 75' - /. o&--x-/v*
m A sgaxio''6

10. 9c - t.%2. Jc 77
15 ?* 5 - £.03 £.77
20 9. Z 8 - /-£/ 3 ' O yj>

25 8*99 - £«£?/? 2.Sf
30 8*6+ 0/ ^£4 & f&
35 &o?S A 5^ 4.4Z
40 7.SSL 5.// S.&L
45 7*3+ /.^ &'44
50 6c 81 0.#43 6.SA
55 6*33 - 0.778 Z.9S
60 S 63 - £.3 6>. 89
65 So/ - £,8o B./8
70 »4.36 ~ *1.3l+ 8.67
75 3.67 - 0. U9 8^S
80 A-9S A 33 6*9 £>

M Si. 5(3 Zo90 8.69

90 A So 3.3/ 9* 9k

95 o. 7Sf Z.Z4- JcOOX'O'^
100 c £,7S X/d- J



Failure Deflection and Strain Data for Minimum Failure

Value of P
t
/PE

S = /S'O

0= 4.0

T = 0.4.0Z

^ = 3.Z7X/0' 5
'

\/*z **= 8* 30 h = 20

Per cent of
length from
loaded end

{%)

Longitudinal
deflection

Lateral
deflection

Extreme
fiber
strain

7. Uixtti* t

5 9^0 - 3. 8cy/o- + 0-5'(,9 X/o'3

10 q*xo - 0,28ZX/*~ 2 /Ua
15 f.Zp - 0,14-1 r.67
20 9.DL - /.OB 3,09
25 8.74- - 6.999 4*14-
30 8,35 - 0. 4-34- 4-.13
55 7-9o 0.5/9 4.1A
40 7o4~2~ A 4-4- &SI
45 6,9/ ft b If 6.BZ
50 6,38 0'873 £>.<?£>

55 &%L - 0, fix 6>. £6
60 S,&4- - a. og 6>&9
65 4-.<ol - £,8Z 1 ,(oL

70 »4-.OA - J.3& KM
75 j*4f. - 6.804- 7.19
80 «&7? /.£9 6>.fc

05 £.IZ a.$L Z,o9

90 I.++ 3> (oO <9.l£

95 0,733 £.44- Looxto'*'

100 S.57h*-*

74



Failure Deflection and Strain Data for Minimum Failure

Value of P,/PE

S = JS'O

pi/pe ^9*8

T - 6.Z8 9

AT = /.64-X

n = 20

/o" s

Per cent of
length from
loaded end

Longitudinal
deflection

U\/4)

Lateral
deflection

Extreme
filler
strain

- 6>*34x/d~z <D O

5 - G.bL - 4.J9x/o~* C,38l>X/o~ 3

10 - 6. 4-o ~ <o*C f o.qzt
15 ' - 6*49* - $,9o a//
20 - &.$") - 4»(o1 .

J./D
25 - &. (o2 - A bo D.%02
30 - &,(o4- £. 8/ D* 191
55

(ot> (p&l *. 93 D.foQ
40 - 6. S3 £. 9£ /./I
45 - &M 7.3L /.13
50 ~ fo.ft* 6.3$ : £.4$
55 - S.81 3,38 a. 9/
60 - Jt'5<3 a, os 3.03
65 - s:// Si'Sil 4,1/

"

70 -.4X&I '$.)£ S. 4#
75 - 4-.0A 6. /09 (o . &&,

80 - 3.31 - 3.3L Lot (a^>

85 - 2. 64 -
f.-jfj , / • ti (a

90 - ).Q2 - £.2 9 . e,<rt

95 - o. 93o - 4.8Z 3.4%
100 O /.ODX/o- 1'




